1 Simplify to an expression of a single trigonometric functi
1.) Simplify to an expression of a single trigonometric function, then find the exact value.
2.) Simplify the equation to a single trigonometric function.
3.) Write the equation as a single sine expression.
4.) Find the exact value of cos 75 degrees.
Solution
1) 6 cos2 (/8) - 6 sin2 (/8)
==> 6 (cos2 (/8) - sin2 (/8))
==> 6 cos (2(/8)) since cos2x - sin2x = cos(2x) , here x = /8
==> 6 cos(/4)
==> 6(1/2)
==> 32
==> 4.2426
6 cos2 (/8) - 6 sin2 (/8) = 4.2426
Hence 6 cos2 (/8) - 6 sin2 (/8) = 4.2426
2) y = 10 sin(x/2) cos(x/2)
==> y = 5 (2sin(x/2) cos(x/2))
==> y = 5 sin(2 * x/2) since 2 sin cos = sin(2) , here = x/2
==> y = 5sinx
Hence y = 10 sin(x/2) cos(x/2) = 5sinx
3) sin8 cos4 - cos8 sin4
==> sin(8 - 4) since sinA cosB - cosA sinB , here A = 8 , B = 4
==> sin(4)
Hence sin8 cos4 - cos8 sin4 = sin(4)
4) cos 75o = cos(45o + 30o)
we have cos(A + B) = cosAcosB - sinAsinB
==> cos(45o + 30o) = cos45ocos30o - sin45osin30o
==> (1/2)(3/2) - (1/2)(1/2)
==> (3 -1)/(22)
Hence cos 75o = (3 -1)/(22)
==> cos 75o = 0.258819
