Find a parametrization of the intersection of the surfaces z
Find a parametrization of the intersection of the surfaces z = x2 y2 and z = x2 + xy 5 using t = y as a parameter.
Solution
z= x^2 - y^2
z = x^2 +xy -5
use y =t
point of intersection of surfaces : x^2 -y^2 = x^2 +xy -5
-y^2 = xy -5
y^2 +xy -5 =0
plug t = y
So, t^2 +xt -5 =0
xt = 5 - t^2
x = 5/t - t
z = x^2 - y^2 = (5/t -t)^2 - t^2
= 25/t^2 +t^2 - 10 -t^2
= 25/t^2 -10
So, x = 5/t -t
y = t
z = 25/t^2 -10
So, point of intersection : ( 5/t -t , t)
