Suppose a coin has PH 23 and PH 13 a For five tosses of th
Suppose a coin has P(H) = 2/3 and P(H) = 1/3.
a) For five tosses of this coin find the probability of getting exactly 4 heads and 1 tail.
b) For five tosses of this coin find the probability of getting exactly 2 tails and 3 heads.
Solution
Do you mean P(H) = 2/3, and P(Tails) = 1/3?
Here, we treat \"success\" as getting heads.
If so, this is the solution:
a)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    5      
 p = the probability of a success = 2/3 =   0.666666667      
 x = the number of successes =    4      
           
 Thus, the probability is          
           
 P (    4   ) =    0.329218107 [ANSWER]
*****************
b)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    5      
 p = the probability of a success =    0.666666667      
 x = the number of successes =    3      
           
 Thus, the probability is          
           
 P (    3   ) =    0.329218107 [ANSWER]

