The time needed to complete a final examination in a particu
The time needed to complete a final examination in a particular college course is normally distributed with a mean of 83 minutes and a standard deviation of 13 minutes. Answer the following questions.
What is the probability of completing the exam in one hour or less (to 4 decimals)?
   
What is the probability that a student will complete the exam in more than 60 minutes but less than 75 minutes (to 4 decimals)?
   
Solution
a) What is the probability of completing the exam in one hour or less (to 4 decimals)?
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    60      
 u = mean =    83      
           
 s = standard deviation =    13      
           
 Thus,          
           
 z = (x - u) / s =    -1.769230769      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z >   -1.769230769   ) =    0.038427686 [answer]
********
b)
What is the probability that a student will complete the exam in more than 60 minutes but less than 75 minutes (to 4 decimals)?
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    60      
 x2 = upper bound =    75      
 u = mean =    83      
           
 s = standard deviation =    13      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.769230769      
 z2 = upper z score = (x2 - u) / s =    -0.615384615      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.038427686      
 P(z < z2) =    0.269150375      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.230722689   [ANSWER]

