find the exact value of the expression cossin145 and rewrite
find the exact value of the expression cos(sin^-1(4/5)) and rewrite the expression sin(tan^-1(x)) as an algebraic expression in x.
Solution
cos ( sin^-1 (4/5))
let sin^-1 (4/5) = x
sin x = 4/5
cos x = 3/5
therefore , cos ( sin^-1 (4/5) = 3/5
sin ( tan^-1 (x))
let y = tan^-1 x
tan y = x
tan theta = perpendicular / base
hence , perpendicular = x , base = 1
hypotenuse = sqrt ( x^2 + 1 )
so, sin y = perpendicular / hypotenuse = x / sqrt (x^2+1)
sin( tan^-1 x) = x / sqrt (x^2+1)

