Let A 1 4 2 5 0 1 0 1 2 8 4 6 x 1 3 2 3 r10 2 13 a Is x Null
Solution
Take the given matrix and find the reduced row echelon form.
Add 2 times the 1st row to the 3rd row
 1   4   2   5
 0   1   0   1
 0   16   0   16
Add -16 times the 2nd row to the 3rd row
1   4   2   5
 0   1   0   1
 0   0   0   0
Add -4 times the 2nd row to the 1st row
 Matrix
 1   0   2   1
 0   1   0   1
 0   0   0   0
This is the reduced row echelon form of the augmented matrix.
The corresponding system is,
 x1 +2 x3+ x4 = 0
    x2 + x4 = 0
       0 = 0
 Clearly x3,x4 are free variables.
x1=-2x3-x4+0x1+0x2
 x2=-x4+0x3+0x2+0x1
 x3=x3+0x4+0x2+0x1
 x4=x4+0x3+0x2+0x1
Then, x3[-2,0,1,0]^T+x4[-1,-1,0,1]^T
 Therefore, Null(A)={[-2,0,1,0]^T,[-1,-1,0,1]^T}
 Clearly, x=[-2,0,1,0]^T-3[-1,-1,0,1}^T
 Therefore, x is in Null(A).
![Let A= [1 4 2 5 0 1 0 1 -2 8 -4 6] x= [1 -3 -2 3] r=[10 2 13] a) Is x Null(A)? b) Find a basis for the Nullspace of A as span of a set of vectors.SolutionTake   Let A= [1 4 2 5 0 1 0 1 -2 8 -4 6] x= [1 -3 -2 3] r=[10 2 13] a) Is x Null(A)? b) Find a basis for the Nullspace of A as span of a set of vectors.SolutionTake](/WebImages/11/let-a-1-4-2-5-0-1-0-1-2-8-4-6-x-1-3-2-3-r10-2-13-a-is-x-null-1007891-1761519857-0.webp)
