Diane suspects that car garages chage women more than they d
Diane suspects that car garages chage women more than they do men. She took her car for service to 12 shops. She was given average estimate of $85 with standard deviation of $28. Her friend Steve took her car to 9 shops. He was given average estimate of $65 with standard deviation of $21. At 0.05 level of significance, assuming normal populations with equal standard deviation, solve Diane\'s suspicions.
Solution
Formulating the null and alternative hypotheses,              
               
 Ho:   u1 - u2   <=   0  
 Ha:   u1 - u2   >   0  
 At level of significance =    0.05          
 As we can see, this is a    right   tailed test.      
 Calculating the means of each group,              
               
 X1 =    85          
 X2 =    65          
               
 Calculating the standard deviations of each group,              
               
 s1 =    28          
 s2 =    21          
               
 Thus, the pooled standard deviation is given by              
               
 S = sqrt[((n1 - 1)s1^2 + (n2 - 1)(s2^2))/(n1 + n2 - 2)]               
               
 As n1 =    12   , n2 =    9  
               
 Then              
               
 S =    25.28989813          
               
 Thus, the standard error of the difference is              
               
 Sd = S sqrt (1/n1 + 1/n2) =    11.15179686          
               
 As ud = the hypothesized difference between means =    0   , then      
               
 t = [X1 - X2 - ud]/Sd =    1.793432956          
               
 Getting the critical value using table/technology,              
 df = n1 + n2 - 2 =    19          
 tcrit =    +   1.729132812      
               
 Getting the p value using technology,              
               
 p =    0.044418528          
               
 Thus, as we see, comparing t and tcrit (or, comparing p and the significance level) we   REJECT THE NULL HYPOTHESIS.          
Thus, there is significant evidence that car garages charge women more than they do men. [conclusion]

