In order to conduct a hypothesis test of the population mean

In order to conduct a hypothesis test of the population mean, a random sample of 9 observations is drawn from a normally distributed population. The resulting mean and the standard deviation are calculated as 16.9 and 1.9, respectively.

Use the critical value approach to conduct the following tests at = 0.01.

H0: 15.3 against HA: > 15.3

a-1.

Calculate the value of the test statistic. (Round your intermediate calculations to 4 decimal places and final answer to 2 decimal places.)

a-2.

Calculate the critical value. (Round your answer to 3 decimal places.)

a-3.

What is the conclusion?

H0: = 15.3 against HA: 15.3

b-1.

Calculate the value of the test statistic. (Round your intermediate calculations to 4 decimal places and final answer to 2 decimal places.)

b-2.

Calculate the critical value(s). (Round your answers to 3 decimal places.)

H0: 15.3 against HA: > 15.3

Solution

a-1)

Formulating the null and alternative hypotheses,              
              
Ho:   u   <=   15.3  
Ha:    u   >   15.3  
              
As we can see, this is a    right   tailed test.      
              
              
Getting the test statistic, as              
              
X = sample mean =    16.9          
uo = hypothesized mean =    15.3          
n = sample size =    9          
s = standard deviation =    1.9          
              
Thus, t = (X - uo) * sqrt(n) / s =    2.526315789 = 2.53 [ANSWER]

********************

A-2)
  
Thus, getting the critical t,              
df = n - 1 =    8          
tcrit = 2.896 [ANSWER]

*********************

a-3)

OPTION D: Do not reject H0 since the value of the test statistics is smaller than the critical value.

**********************

b-1)

Formulating the null and alternative hypotheses,              
              
Ho:   u   =   15.3  
Ha:    u   =/   15.3  
              
As we can see, this is a    two   tailed test.      
              
Getting the test statistic, as              
              
X = sample mean =    16.9          
uo = hypothesized mean =    15.3          
n = sample size =    9          
s = standard deviation =    1.9          
              
Thus, t = (X - uo) * sqrt(n) / s =    2.526315789 = 2.53 [ANSWER]

**********************

b-2)          

Thus, getting the critical t,              
df = n - 1 =    8          
tcrit =    +/-   3.355 [ANSWER]      
              

In order to conduct a hypothesis test of the population mean, a random sample of 9 observations is drawn from a normally distributed population. The resulting m
In order to conduct a hypothesis test of the population mean, a random sample of 9 observations is drawn from a normally distributed population. The resulting m

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site