Solve the equation on the interval 02pi 2sin2 x6sinx8Solutio
Solve the equation on the interval [0,2pi] 2sin^2 x=6sinx+8
Solution
2sin^2 x=6sinx+8
divide the equation by 2:
sin^2x = 3sinx +4
sin^2x - 3sinx -4 =0
sin^2x - 4sinx +sinx -4 =0
sinx( sinx -4) +1(sinx -4) =0
(sinx +1)(sinx -4) =0
sinx =4 (Neglect this as sin cannot be greater than 1)
sinx +1 =0
sinx = -1 on the interval [ 0, 2pi ]
x = sin^-1(-1)
x = 3pi/2
Solution : x= 3pi/2
![Solve the equation on the interval [0,2pi] 2sin^2 x=6sinx+8Solution2sin^2 x=6sinx+8 divide the equation by 2: sin^2x = 3sinx +4 sin^2x - 3sinx -4 =0 sin^2x - 4s Solve the equation on the interval [0,2pi] 2sin^2 x=6sinx+8Solution2sin^2 x=6sinx+8 divide the equation by 2: sin^2x = 3sinx +4 sin^2x - 3sinx -4 =0 sin^2x - 4s](/WebImages/11/solve-the-equation-on-the-interval-02pi-2sin2-x6sinx8solutio-1008284-1761520148-0.webp)