Find dydx from first principles if y2x2Solutiondydx lim fxh
Find dy/dx from first principles if y=2x^2?
Solution
dy/dx = lim [f(x+h) - f(x)]/h, if h approaches to 0.
lim [f(x+h) - f(x)]/h = lim [2(x+h)^2 - 2x^2]/h
We\'ll expand the binomial:
lim [2(x+h)^2 - 2x^2]/h = lim (2x^2 + 4xh + 2h^2 - 2x^2)/h
We\'ll eliminate like terms inside brackets:
lim (2x^2 + 4xh + 2h^2 - 2x^2)/h = lim (4xh + 2h^2)/h
We\'ll factorize by 2h the numerator:
lim (4xh + 2h^2)/h = lim 2h*(2x + h)/h
We\'ll simplify and we\'ll get:
lim 2h*(2x + h)/h = lim 2*(2x + h)
We\'ll substitute h by the value of accumulation point:
lim 2*(2x + h) = 4x + 2*0
lim 2*(2x + h) = 4x
The value of dy/dx from first principles is: dy/dx = 4x.
![Find dy/dx from first principles if y=2x^2?Solutiondy/dx = lim [f(x+h) - f(x)]/h, if h approaches to 0. lim [f(x+h) - f(x)]/h = lim [2(x+h)^2 - 2x^2]/h We\'ll e Find dy/dx from first principles if y=2x^2?Solutiondy/dx = lim [f(x+h) - f(x)]/h, if h approaches to 0. lim [f(x+h) - f(x)]/h = lim [2(x+h)^2 - 2x^2]/h We\'ll e](/WebImages/11/find-dydx-from-first-principles-if-y2x2solutiondydx-lim-fxh-1008689-1761520417-0.webp)
