The fracture strength of a certain type of manufactured glas
The fracture strength of a certain type of manufactured glass is normally distributed with a mean of 512 MPa with a standard deviation of 14 MPa.
What is the probability that a randomly chosen sample of glass will break at less than 512 MPa?
What is the probability that a randomly chosen sample of glass will break at more than 536 Mpa?
What is the probability that a randomly chosen sample of glass will break at less than 541 MPa?
| (a) | What is the probability that a randomly chosen sample of glass will break at less than 512 MPa? 
 | 
Solution
a)
As 512 is the mean, by symmetry, it is 0.5. [ANSWER, 0.5]
**************
b)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    536      
 u = mean =    512      
           
 s = standard deviation =    14      
           
 Thus,          
           
 z = (x - u) / s =    1.714285714      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.714285714   ) =    0.043238133 [ANSWER]
*****************
c)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    541      
 u = mean =    512      
           
 s = standard deviation =    14      
           
 Thus,          
           
 z = (x - u) / s =    2.071428571      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   2.071428571   ) =    0.980840618 [ANSWER]

