find the laplace transform h s voutvin sSolutionHs Vouts Vi

find the laplace transform h (s)= vout/vin (s)

Solution

H(s) = Vout(s) /Vin(s)

Let s = j

Then, if vin(t) = V sin(1t),

vout(t) = V · |H(j1)|sin[ 1t +angle of H(j1) ]

where V , sin and 1 are given by the input.

Let us take vin(t) = V sin(2t)

H(s) = Vout(s) /Vin(s) = RCs /RCs + 1

Let s = j2,

H(j2) = jRC2 /(1 + jRC2)

Find |H(j2)|:

|H(j2)| = |jRC2| /|1 + jRC2| = RC2/ (1 + (RC2)2)1/2

Find Angle of H(j2):

LH(j2) = LjRC2 L(1 + jRC2) = / 2 tan1(RC2)

Then,

Vout(t) = V · [RC2/ (1 + (RC2)2)1/2]. sin [2t + /2 tan1 (RC2) ]

find the laplace transform h (s)= vout/vin (s)SolutionH(s) = Vout(s) /Vin(s) Let s = j Then, if vin(t) = V sin(1t), vout(t) = V · |H(j1)|sin[ 1t +angle of H(j1)

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site