find the laplace transform h s voutvin sSolutionHs Vouts Vi
find the laplace transform h (s)= vout/vin (s)
Solution
H(s) = Vout(s) /Vin(s)
Let s = j
Then, if vin(t) = V sin(1t),
vout(t) = V · |H(j1)|sin[ 1t +angle of H(j1) ]
where V , sin and 1 are given by the input.
Let us take vin(t) = V sin(2t)
H(s) = Vout(s) /Vin(s) = RCs /RCs + 1
Let s = j2,
H(j2) = jRC2 /(1 + jRC2)
Find |H(j2)|:
|H(j2)| = |jRC2| /|1 + jRC2| = RC2/ (1 + (RC2)2)1/2
Find Angle of H(j2):
LH(j2) = LjRC2 L(1 + jRC2) = / 2 tan1(RC2)
Then,
Vout(t) = V · [RC2/ (1 + (RC2)2)1/2]. sin [2t + /2 tan1 (RC2) ]
