Identify three different applications that purposely make us

Identify three different applications that purposely make use of distortion in their amplifier circuits.

Select one of the applications. Explain why amplifier distortion is desired in the application you selected.

Evaluate the benefits of operating the application you selected with amplifier distortion and some of the potential disadvantages if distortion is removed.

Solution

It does this by taking energy from a power supply and controlling the output to match the input signal shape but with a larger amplitude. In this sense, an amplifier modulates the output of the power supply to make the output signal stronger than the input signal. An amplifier is effectively the opposite of an attenuator: while an amplifier provides gain, an attenuator provides loss.

An amplifier can either be a separate piece of equipment or an electrical circuit within another device. The ability to amplify is fundamental to modern electronics, and amplifiers are widely used in almost all electronic equipment. The types of amplifiers can be categorized in different ways. One is by the frequency of the electronic signal being amplified;audio amplifiers amplify signals in the audio (sound) range of less than 20 kHz, RF amplifiers amplify frequencies in the radio frequency range between 20 kHz and 300 GHz. Another is which quantity, voltage or current is being amplified; amplifiers can be divided into voltage amplifiers, current amplifiers, transconductance amplifiers, andtransresistance amplifiers. A further distinction is whether the output is a linear or nonlinear representation of the input. Amplifiers can also be categorized by their physical placement in the signal chain.[1]

The first practical electronic device that could amplify was the Audion (triode) vacuum tube, invented in 1906 by Lee De Forest, which led to the first amplifiers around 1912. The terms \"amplifier\" and \"amplification\" (from the Latin amplificare, \'to enlarge or expand\'[2]) were first used for this new capability around 1915 when triodes became widespread.[2]For the next 50 years, vacuum tubes were the only devices that could amplify. All amplifiers used them until the 1960s, when transistors appeared. Most amplifiers today use transistors, though tube amplifiers are still produced.

1) It has excellent frequency response. The gain is constant over the audio frequency range which is the region of most importance for speech, music etc. (ii) It has lower cost since it employs resistors and capacitors which are cheap. (iii) The circuit is very compact as the modern resistors and capacitors are small and extremely

(i) The RC coupled amplifiers have low voltage and power gain. It is because the low resistance presented by the input of each stage to the preceding stage decreases the effective load resistance (RAC) and hence the gain. (ii) They have the tendency to become noisy with age, particularly in moist climates. (iii) Impedance matching is poor. It is because the output impedance of RC coupled amplifier is

Identify three different applications that purposely make use of distortion in their amplifier circuits. Select one of the applications. Explain why amplifier d

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site