Assume that womens heights are normally distributed with a m
Assume that women\'s heights are normally distributed with a mean given by mu = 64.3 in, and a standard deviation given by sigma = 2.1 in
(a) If 1 woman is randomly selected, find the probability that her height is less than 65 in.
(b) If 32 women are randomly selected, find the probability that they have a mean height less than 65 in.
The probability is approximately___________?
Solution
a)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    65      
 u = mean =    64.3      
           
 s = standard deviation =    2.1      
           
 Thus,          
           
 z = (x - u) / s =    0.333333333      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z < 0.333333333   ) =    0.63055866 [ANSWER]
*****************
b)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    65      
 u = mean =    64.3      
 n = sample size =    32      
 s = standard deviation =    2.1      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    1.885618083      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z < 1.885618083   ) =    0.970326781 [ANSWER]

