Sales of HotBlast heaters have grown steadily during the pas

Sales of Hot-Blast heaters have grown steadily dur-ing the past five years, as shown in the following table:

Year

Sales

1

480

2

525

3

548

4

593

5

614

(a) Using exponential smoothing constants of 0.35, 0.65, and 0.95, develop forecasts for years 2 through 6. The sales manager had pre-dicted, before the business started, that year 1’s sales would be 440 air conditioners. Which smoothing constant gives the most accurate forecast?

(b) Use a three-year moving average forecasting model to forecast sales of heaters.

(c) Using linear trend analysis, develop a forecast-ing model for the sales of heaters.

(d) Which of the methods analyzed here would you use? Explain your answer.

Year

Sales

1

480

2

525

3

548

4

593

5

614

Solution

Sales of Hot-Blast heaters have grown steadily dur-ing the past five years, as shown in the following table

By using exponential smoothing constants we have to calculate forecasts.

The constant is nothing but the alpha.

we calculate forecasts for three different value.

i) alpha = 0.35

First enter the given data in MINITAB .

This will done in MINITAB the path for that is

STAT ->Time series ->double exponential smoothing -> variable sales ->weights to use in smoothing -> use 0.35 for level and trend ->generate forecasts number of forecasts 6.->ok

So the output is,

Double Exponential Smoothing for sales

Data sales
Length 5


Smoothing Constants

Alpha (level) 0.35
Gamma (trend) 0.35


Accuracy Measures

MAPE 1.2717
MAD 7.0537
MSD 52.4874


Time sales Smooth Predict Error
1 480 483.120 484.800 -4.80000
2 525 519.236 516.132 8.86800
3 548 551.467 553.334 -5.33413
4 593 587.743 584.912 8.08792
5 614 619.316 622.179 -8.17852


Forecasts

Period Forecast Lower Upper
6 652.750 635.469 670.031
7 686.184 667.779 704.588
8 719.617 699.975 739.260
9 753.051 732.076 774.027
10 786.485 764.100 808.870
11 819.919 796.060 843.778

year   sales   SMOO1   LEVE1   TREN1   FITS1   RESI1   FORE1   UPPE1   LOWE1
1   480   483.120   483.120   33.0120   484.800   -4.80000   652.750   670.031   635.469
2   525   519.236   519.236   34.0983   516.132   8.86800   686.184   704.588   667.779
3   548   551.467   551.467   33.4449   553.334   -5.33413   719.617   739.260   699.975
4   593   587.743   587.743   34.4357   584.912   8.08792   753.051   774.027   732.076
5   614   619.316   619.316   33.4338   622.179   -8.17852   786.485   808.870   764.100
                           819.919   843.778   796.060

For alpha = 0.65

Double Exponential Smoothing for sales

Data sales
Length 5


Smoothing Constants

Alpha (level) 0.65
Gamma (trend) 0.65


Accuracy Measures

MAPE 1.6980
MAD 9.4673
MSD 96.5605


Time sales Smooth Predict Error
1 480 481.680 484.800 -4.8000
2 525 520.888 513.252 11.7480
3 548 551.298 557.424 -9.4237
4 593 589.798 583.852 9.1477
5 614 618.276 626.217 -12.2172


Forecasts

Period Forecast Lower Upper
6 649.533 626.339 672.728
7 680.790 652.341 709.240
8 712.047 677.857 746.238
9 743.305 703.095 783.514
10 774.562 728.163 820.960
11 805.819 753.121 858.517

year   sales   SMOO1   LEVE1   TREN1   FITS1   RESI1   FORE1   UPPE1   LOWE1
1   480   481.680   481.680   31.5720   484.800   -4.8000   649.533   672.728   626.339
2   525   520.888   520.888   36.5355   513.252   11.7480   680.790   709.240   652.341
3   548   551.298   551.298   32.5540   557.424   -9.4237   712.047   746.238   677.857
4   593   589.798   589.798   36.4189   583.852   9.1477   743.305   783.514   703.095
5   614   618.276   618.276   31.2571   626.217   -12.2172   774.562   820.960   728.163
                           805.819   858.517   753.121

For alpha = 0.95

Double Exponential Smoothing for sales

Data sales
Length 5


Smoothing Constants

Alpha (level) 0.95
Gamma (trend) 0.95


Accuracy Measures

MAPE 2.782
MAD 15.688
MSD 278.402


Time sales Smooth Predict Error
1 480 480.240 484.800 -4.8000
2 525 524.225 509.508 15.4920
3 548 548.974 567.475 -19.4749
4 593 592.082 574.647 18.3528
5 614 615.016 634.319 -20.3192


Forecasts

Period Forecast Lower Upper
6 638.915 600.480 677.349
7 662.813 606.019 719.608
8 686.712 610.525 762.900
9 710.611 614.621 806.601
10 734.510 618.519 850.501
11 758.409 622.304 894.513

year   sales   SMOO1   LEVE1   TREN1   FITS1   RESI1   FORE1   UPPE1   LOWE1
1   480   480.240   480.240   29.2680   484.800   -4.8000   638.915   677.349   600.480
2   525   524.225   524.225   43.2495   509.508   15.4920   662.813   719.608   606.019
3   548   548.974   548.974   25.6734   567.475   -19.4749   686.712   762.900   610.525
4   593   592.082   592.082   42.2369   574.647   18.3528   710.611   806.601   614.621
5   614   615.016   615.016   23.8988   634.319   -20.3192   734.510   850.501   618.519
                           758.409   894.513   622.304

As alpha increases forecasts forecasts value decreases.

Moving Average for sales

Data sales
Length 5
NMissing 0


Moving Average

Length 3


Accuracy Measures

MAPE 7.15
MAD 42.22
MSD 1926.89


Time sales MA Predict Error
1 480 * * *
2 525 517.667 * *
3 548 555.333 517.667 30.3333
4 593 585.000 555.333 37.6667
5 614 * 555.333 58.6667


Forecasts

Period Forecast Lower Upper
6 555.333 469.298 641.369
7 555.333 469.298 641.369
8 555.333 469.298 641.369
9 555.333 469.298 641.369
10 555.333 469.298 641.369
11 555.333 469.298 641.369

469.298

Trend analysis :

Trend Analysis for sales

Data sales
Length 5
NMissing 0


Fitted Trend Equation

Yt = 451.2 + 33.6*t


Accuracy Measures

MAPE 1.0164
MAD 5.6000
MSD 32.8800


Time sales Trend Detrend
1 480 484.8 -4.8
2 525 518.4 6.6
3 548 552.0 -4.0
4 593 585.6 7.4
5 614 619.2 -5.2


Forecasts

Period Forecast
6 652.8
7 686.4
8 720.0
9 753.6
10 787.2
11 820.8

year sales AVER1 FITS1 RESI1 FORE1 UPPE1 LOWE1
1 480 * * * 555.333 641.369 469.298
2 525 517.667 * * 555.333 641.369 469.298
3 548 555.333 517.667 30.3333 555.333 641.369 469.298
4 593 585 555.333 37.6667 555.333 641.369 469.298
5 614 * 555.333 58.6667 555.333 641.369 469.298
555.333 641.369

469.298

Sales of Hot-Blast heaters have grown steadily dur-ing the past five years, as shown in the following table: Year Sales 1 480 2 525 3 548 4 593 5 614 (a) Using
Sales of Hot-Blast heaters have grown steadily dur-ing the past five years, as shown in the following table: Year Sales 1 480 2 525 3 548 4 593 5 614 (a) Using
Sales of Hot-Blast heaters have grown steadily dur-ing the past five years, as shown in the following table: Year Sales 1 480 2 525 3 548 4 593 5 614 (a) Using
Sales of Hot-Blast heaters have grown steadily dur-ing the past five years, as shown in the following table: Year Sales 1 480 2 525 3 548 4 593 5 614 (a) Using
Sales of Hot-Blast heaters have grown steadily dur-ing the past five years, as shown in the following table: Year Sales 1 480 2 525 3 548 4 593 5 614 (a) Using

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site