assume data is normally distributed round answers to three d
(assume data is normally distributed, round answers to three decimal places)
Solution
a)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    9      
 x2 = upper bound =    12      
 u = mean =    13      
 n = sample size =    45      
 s = standard deviation =    15      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -1.788854382      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    -0.447213595      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.036819135      
 P(z < z2) =    0.327360423      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.290541288   [ANSWER]
********************
b)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    13      
 u = mean =    13      
 n = sample size =    45      
 s = standard deviation =    15      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    0      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   0   ) =    0.5 [ANSWER]
**********************
c)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.025      
           
 Then, using table or technology,          
           
 z =    -1.959963985      
           
 As x = u + z * s / sqrt(n)          
           
 where          
           
 u = mean =    13      
 z = the critical z score =    -1.959963985      
 s = standard deviation =    15      
 n = sample size =    45      
 Then          
           
 x = critical value =    8.617387297   [ANSWER]  


