Find the point x y where the maximum value of z x 3y is ac
Find the point (x, y) where the maximum value of z = x + 3y is achieved, subject to 2x + 3y 100, 5x + 4y 200, x 10, y 20.
Solution
Using Simplex Algorithm:
x y s1 s2 s3 s4 z
------------------------------------------------------------
2 3 1 0 0 0 0 100
5 4 0 1 0 0 0 200
1 0 0 0 -1 0 0 10
0 1 0 0 0 -1 0 20
-1 -3 0 0 0 0 1 0
x y s1 s2 s3 s4 z
------------------------------------------------------------
0 3 1 0 2 0 0 80
0 4 0 1 5 0 0 150
1 0 0 0 -1 0 0 10
0 1 0 0 0 -1 0 20
0 -3 0 0 -1 0 1 10
x y s1 s2 s3 s4 z
------------------------------------------------------------
0 0 1 0 2 3 0 20
0 0 0 1 5 4 0 70
1 0 0 0 -1 0 0 10
0 1 0 0 0 -1 0 20
0 0 0 0 -1 -3 1 70
x y s1 s2 s3 s4 z
------------------------------------------------------------
0 0 0.33 0 0.67 1 0 6.7
0 0 -1.3 1 2.3 0 0 43
1 0 0 0 -1 0 0 10
0 1 0.33 0 0.67 0 0 27
0 0 1 0 1 0 1 90
hence answer is z = 90; x = 10, y = 27.
