10 The compressive strength of samples of cement can be mode
Solution
Mean = u = 6000
SD = 100
a) LEss than 6250
z = (x - u) / SD
z = (6250 - 6000) / 100
z = 2.5
P(z < 2.5) is to be found
Use this link ----> https://www.easycalculation.com/statistics/p-value-for-z-score.php
And plug in z = 2.5 and check the left tailed value.....
0.9938 ---> ANSWER
----------------------------------------------------------------------------------
z = (x - u) / SD
z = (5800 - 6000) / 100
z = -2
P(z < -2) = 0.0228
z = (x - u) / SD
z = (5900 - 6000) / 100
z = -1
P(z < -1) = 0.1587
P(-2 < z < -1) = 0.1587 - 0.0228 ----> 0.1359 --> ANSWER
----------------------------------------------------------------------------
If 95% of the samples exceed, then 5% is lower...
So, check this link ----> http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
When P = 0.05, z = -2.575 approx
z = (x - u) / SD
-2.575 = (x - 6000) / 100
-257.5 = x - 6000
x = 6000 - 257.5
x = 5742.5
So, a value of 5742.5 is exceeded by 95% of the sample.... ---> ANSWER
