Consider the following problem min SX1 6x2 4x3 s t x1 2x
Consider the following problem min SX_1 - 6x_2 + 4x_3 s. t. - x_1 + 2x2 lessthanorequalto 1 3x_1 - x_2 greaterthanorequalto2 3x_2 + x_3 =3 X_1 urs,x_2 greaterthanorequalto 0, x_3 lessthanorequalto 0 Convert this linear programming (LP) problem to the standard form. Introduce the artificial variables and big M to get an initial solution: What is the LP problem after you adding artificial variables and big M?
Solution
To convert a linear program into standard form 5x1-6x2+4x3, -x1+2x2<=1, 3x1-x2>=2, 3x2+x3=3, x2>=0
x3<=0.
We consider a inequality constraint -x1+2x2<=1
converting <= variable to a standard form, we add a slack variable -x1+2x2<=1
-x1 + 2x2 +s1=1
s1 = 1 +x1 - 2x2.
To convert a >= variable to a standard form we add a surplus variable 3x1-x2>=2
3x1-x2-s2=2
s2 = 3x1-x2 -2
max Z= 5x1-6x2+4x3
x1-2x2-s1=-1
3x1-x2-s2=2
x2>=0, x3<=0
s1>=0, S2 >=0
x1 = -1 + 2x2 +s1
eliminating x1... i.e.,
substituting this will give
3 (-1 + 2x2 +s1) -s2-x2 = 2
5x2 +3s1-s2=5.
substituting in first
5(-1 + 2x2 +s1)-6x2+4x3=0
4x2 +5s1+4x3=5
Finally standard form
5x2 +3s1-s2=5.
4x2 +5s1+4x3=5.
x2>=0 , x3<=0, s1>=0 , s2>=0
