We have a machine element as a springmassdamper system my b
We have a machine element as a spring-mass-damper system my\" + by\' + ky = 0 y(t) = q e^-0.7t cos w t in w = 4 rad/sec use the graphical method to estimate the time required for the displacement to decrease to 3.5 mm hand in the plot with a sketch showing the root location. Use newton-Raphson function from in numerical methods text if find time hand in calculations for y\'(t) print out results, root, epsilonPa, # of iterations use format long
Solution
x=-5:.05:5;
x=x(:);
t3=.75*ones(length(x),1)+.25*x-2*x.^2+x.^3;
xn=-5;
xo=10; % final error criterion
e=.0001;
% plot the function
f2=figure;
fx=xn^3-2*xn^2+.25*xn+.75;
plot(x,t3, ’--’, xn, fx, ’s’)
set(gca, ’FontSize’,16);
xlabel(’x’, ’Fontsize’,16);
ylabel(’f(x)’, ’Fontsize’,16);
set(gca, ’XTick’, -5:.5:5);
title([’Newton-Raphson Method (from ’, num2str(xn), ’)’], ’Fontsize’,16)
grid on
hold on
% do the iteration until convergence
while abs((xn-xo)/xn) > e
fx=xn^3-2*xn^2+.25*xn+.75;
fpx=3*xn^2-4*xn+.25;
xn=xn-(fx)/(fpx);
plot(xn, fx, ’s’);
pause
end
