p12p12p12p12Solutionp12 p12p12 p12 p12 1p12p12 1p12 sin

(p^(1/2)-p^(-1/2))(p^(1/2)+p^(-1/2))

Solution

[p1/2 - p-1/2][p1/2 + p-1/2]

= [p1/2 - (1/p1/2)][p1/2 + (1/p1/2)]        since a-m = 1/am

= [(p1/2 p1/2 - 1)/p1/2][(p1/2 p1/2 + 1)/p1/2]

= [(p1/2+ 1/2 - 1)/p1/2][(p1/2+ 1/2 + 1)/p1/2]       since am * an = am+n

= [(p1 - 1)(p1 + 1)]/p1

= (p -1)(p +1)/p

= (p2 -1)/p             since (a - b)(a + b) = a2 - b2

= p2/p -1/p

= p2-1 - p-1         since 1/am = a-m , am/an = am-n

= p - p-1

Hence [p1/2 - p-1/2]/[p1/2 + p-1/2] = p - p-1

(p^(1/2)-p^(-1/2))(p^(1/2)+p^(-1/2))Solution[p1/2 - p-1/2][p1/2 + p-1/2] = [p1/2 - (1/p1/2)][p1/2 + (1/p1/2)] since a-m = 1/am = [(p1/2 p1/2 - 1)/p1/2][(p1/2 p1

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site