p12p12p12p12Solutionp12 p12p12 p12 p12 1p12p12 1p12 sin
(p^(1/2)-p^(-1/2))(p^(1/2)+p^(-1/2))
Solution
[p1/2 - p-1/2][p1/2 + p-1/2]
= [p1/2 - (1/p1/2)][p1/2 + (1/p1/2)] since a-m = 1/am
= [(p1/2 p1/2 - 1)/p1/2][(p1/2 p1/2 + 1)/p1/2]
= [(p1/2+ 1/2 - 1)/p1/2][(p1/2+ 1/2 + 1)/p1/2] since am * an = am+n
= [(p1 - 1)(p1 + 1)]/p1
= (p -1)(p +1)/p
= (p2 -1)/p since (a - b)(a + b) = a2 - b2
= p2/p -1/p
= p2-1 - p-1 since 1/am = a-m , am/an = am-n
= p - p-1
Hence [p1/2 - p-1/2]/[p1/2 + p-1/2] = p - p-1
![(p^(1/2)-p^(-1/2))(p^(1/2)+p^(-1/2))Solution[p1/2 - p-1/2][p1/2 + p-1/2] = [p1/2 - (1/p1/2)][p1/2 + (1/p1/2)] since a-m = 1/am = [(p1/2 p1/2 - 1)/p1/2][(p1/2 p1 (p^(1/2)-p^(-1/2))(p^(1/2)+p^(-1/2))Solution[p1/2 - p-1/2][p1/2 + p-1/2] = [p1/2 - (1/p1/2)][p1/2 + (1/p1/2)] since a-m = 1/am = [(p1/2 p1/2 - 1)/p1/2][(p1/2 p1](/WebImages/12/p12p12p12p12solutionp12-p12p12-p12-p12-1p12p12-1p12-sin-1011186-1761522007-0.webp)