The frame is supported by a pin at A and rope DE Member BC w
Solution
To find the reaction forces at E and D we must consider equilibrium forces at E and A,
sigma Fv = 0
Re + Ra - Fde sin 56.29 - Fdc sin 26.57 - 540 = 0 ------- eqn 1
Fde + Fdc = 360 x 9.81 + 700 x 9.81 ------------------------- eqn 2
Sigma Fh = 0
He + Ha - Fde cos 56.29 + Fdc cos 26.57 = 0 -------------- eqn 3
sigma Me = 0
Ra x 12 - 540 x 12 - Fdc sin 26.57 x 24 - Fdc cos 26.57 x 12 = 0 -------- eqn 4
Member ABD:
Mb = 0
Ha x 12 + Fde cos 56.29 x 6 = 0-------------- eqn 5
Member BC:
Mb = Fde cos 56.29 x 6 + Fdc sin 26.57 x 12
Mb = 0
Fde = Fdc sin 26.57 x 12 / cos 56.29 x 6 = 5.36 / 3.32 = 1.61 Fdc
Using eqn 2 find Fdc,
Fdc = (360 x 9.81 + 700 x 9.81 ) / 2.61 = 3984.13 lbf
Fde = 6414 lbf
Using eqn 4 find Ra,
Ra x 12 - 540 x 12 - Fdc sin 26.57 x 24 - Fdc cos 26.57 x 12 = 0
Ra = (540x12 + 3984 sin 26.57 x 24 + 3984 cos 26.57 x 12 ) / 12
Ra = 3774.2 lbf
Using eqn 1 find Re,
Re = - 3774 + 6414 sin 56.29 + 3984 sin 26.57 + 540
Re = 3883.53 lbf
Ha = -6414 cos 56.29 x 0.5 = (-) 1779.85 lbf
He = - 1779.85 + 6414 cos 56.29 -3984 cos 26.57 = -1783.38 lbf
