Please show the whole code Im very confused Matlab code for
Please show the whole code... I\'m very confused. Matlab code for earth orbit
Using a software package such as MATLAB, create a plot of an Earth orbit with a = 31, 800 km and e = 0.6 for 0 lessthanorequalto theta lessthanorequalto 2 pi. The origin of the plot should be Earth. Perigee should be in the direction of the positive x axis (therta = 0). On this plot, you should label (by hand) the semimajor axis, semiminor axis, radius of perigee, radius of apogee, and the semiparameter (semilatus rectum) of the ellipse.Solution
----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Elliptic orbit:
%periapsis
 rp = 500e3 + getradius(\'earth\');
%eccentricity
 ec = .7;
%semimajor axis
 a = getsemimajoraxis(rp,ec);
%apoapsis
 ra = 2*a-rp;
%true anomaly
 theta = [0:.1:360];
orbit = ellipse(theta,a,ec,\'earth\');
figure(1), plot(orbit.x,orbit.y); axis equal
 Re = getradius(\'earth\');
 x = Re*cosd(theta);
 y = Re*sind(theta);
 hold on
 plot(x,y,\'color\',[0 1 1])
 hold off
figure(2), plot(theta,orbit.V/1000)
 xlabel(\'\\theta\'), ylabel(\'V (km/s)\')
 %current time
 c = clock;
%reset hour and second
 c(4) = 12; %hour
 c(5) = 0; %minute
 c(6) = orbit.tau; %seconds
%ellapsed time
 datetime(c)
%returns 14-Feb-2015 21:34:54, so it\'s about 9.5 hours later still on
 %Monday
 2
ans =
 22-Feb-2015 21:34:54
 -----------Elliptic orbit
 %periapsis
 rp = 500e3 + getradius(\'earth\');
 %eccentricity
 ec = .7;
 %semimajor axis
 a = getsemimajoraxis(rp,ec);
 %apoapsis
 ra = 2*a-rp;
 %true anomaly
 theta = [0:.1:360];
 orbit = ellipse(theta,a,ec,\'earth\');
 figure(1), plot(orbit.x,orbit.y); axis equal
 Re = getradius(\'earth\');
 x = Re*cosd(theta);
 y = Re*sind(theta);
 hold on
 plot(x,y,\'color\',[0 1 1])
 hold off
 figure(2), plot(theta,orbit.V/1000)
 xlabel(\'\\theta\'), ylabel(\'V (km/s)\')
 %current time
 c = clock;
 %reset hour and second
 c(4) = 12; %hour
 c(5) = 0; %minute
 c(6) = orbit.tau; %seconds
 %ellapsed time
 datetime(c)
 %returns 14-Feb-2015 21:34:54, so it\'s about 9.5 hours later still on
 %Monday
 2
 ans =
 22-Feb-2015 21:34:54
 3
 The circular orbits at perigee and apogee are
 7.6167 and 3.1997 km/s, respectively.
 -----Parabolic orbit:
 Sphere of influence is actually a chapter 5 concept, but is the distance at which the gravitational forces
 between two objects is equal. Thus,
 While an approximation, if we just estimate this as the point between the sun and the earth where
 these forces balance, then if the orbital radius of Earth is , then
 , and thus solution for r_E in gives
 r_soi = getsphereofinfluence(\'earth\',\'sun\');
 display([\'Radius from center of earth to sphere of influence is approximately \' num2str(r_soi)]);
 %perifocal distance
 rp = 500e3 + getradius(\'earth\');
 %eccentricty
 ec = 1; %always so for a a parabola
 theta = -180:1:180;
 orbit = parabola(theta,rp,\'earth\');
 figure(3), plot(orbit.x,orbit.y); axis equal
 Re = getradius(\'earth\');
 x = Re*cosd(theta);
 y = Re*sind(theta);
 hold on
 plot(x,y,\'color\',[0 1 1])
 hold off plot(theta,orbit.V/1000)
 xlabel(\'\\theta\'), ylabel(\'V (km/s)\')
 Radius from center of earth to sphere of influence is approximately 924722538.0586
 4
 5
 The time required to leave the sphere of influence is
 D = calendarDuration(0,0,0,0,0,orbit.t(end))
 % delta v required
 deltav = [num2str((orbit.Vmax - orbit.Vcirc_rp)/1000) \' km/s\'];
 D =
 186h 28m 23.9429146040929s
 The required to leave the sphere of influence is
 display(deltav)
 deltav =
 3.155 km/s
 ---Hyperbolic orbit
 %eccentricity
 ec = 2.05;
 %semimajor axis
 a = -1.4e11;
 %radial points of interest in orbit
 r1 = getorbitradiusofcelestialbody(\'earth\');
 r2 = getorbitradiusofcelestialbody(\'mars\');
 %get orbit data
 dr = (r2-r1)/100;
 orbit = hyperbola([],a,ec,\'sun\',(r1:dr:r2));
 , plot(orbit.x,orbit.y); axis equal
 Rs = getradius(\'sun\');
 x = Rs*cosd(0:1:360);
 y = Rs*sind(0:1:360);
 hold on
 plot(x,y,\'color\',[.5 .5 .1])
 Re = getorbitradiusofcelestialbody(\'earth\');
 x = Re*cosd(0:1:360);
 y = Re*sind(0:1:360);
 plot(x,y,\'color\',[0 1 1])
 6
 Rm = getorbitradiusofcelestialbody(\'mars\');
 x = Rm*cosd(0:1:360);
 y = Rm*sind(0:1:360);
 plot(x,y,\'color\',[1 .2 .2])
 hold off
 , plot(orbit.theta,orbit.V/1000)
 xlabel(\'\\theta\'), ylabel(\'V (km/s)\')
 7
 The time required to go from Earth to Mars is
 t = seconds2human(orbit.t(end)-orbit.t(1))
 % delta v required
 deltav = [num2str((orbit.V(1) - getcircularvelocity(5e5,\'earth\') - getcircularvelocity(1.4960e+11,\'sun\'))/1000) \' km/s\'];
 t =
 years: 0
 months: 1
 days: 10
 hours: 0
 minutes: 4
 seconds: 1.611795342527330
 The required to leave the sphere of influence is
 display(deltav)
 deltav =
 14.841 km/s
 8
 ------------------Set a Course for Makemake
bodies = [...
 {\'Mercury\'};
 {\'Venus\'};
 {\'Earth\'};
 {\'Mars\'};
 {\'Ceres\'};
 {\'Jupiter\'};
 {\'Saturn\'};
 {\'Uranus\'};
 {\'Neptune\'};
 {\'Pluto\'};
 {\'Makemake\'};
 ];
 color = [ ...
 .9 .6 .1;
 1 .5 0;
 0 1 1;
 1 .4 .1;
 .8 .6 .3;
 1 .5 .35;
 1 .9 0;
 0 .8 1;
 .2 0 1;
 .5 .5 .5;
 .6 0 .6];
%plot the orbit
 for ii = 1:length(bodies)
 orbit = Kepler2cart(char(bodies(ii)));
 ph(ii) = plot3(orbit.x,orbit.y,orbit.z,\'-\'); axis equal
 set(ph(ii),\'color\',color(ii,:),\'linewidth\',1)
 hold on
 end
 %now plot the position
 for ii = 1:length(bodies)
 orbit = Kepler2cart(char(bodies(ii)),juliandate(now));
 ph(ii) = plot3(orbit.x,orbit.y,orbit.z,\'o\'); axis equal
 set(ph(ii),\'color\',color(ii,:),\'markerfacecolor\',color(ii,:))
 hold on
 end
 hold off
 xlabel(\'x\')
 ylabel(\'y\')
 9
 lh = legend(bodies,\'location\',\'northeastoutside\'); legend boxoff




