Verify that the equaiton is an identity sin2x 2sin x cos x
Verify that the equaiton is an identity.
sin2x= 2sin x cos x , substitue 2x=x + x and apply the sine of a sum identity ( sin A+B) = sinAcosB+ cosAsinB
so,
sin2x=sin (x+x)
= ???
Solution
sin2x
=sin(x+x)
( sin A+B) = sinAcosB+ cosAsinB
=sinxcosx +cosxsinx
=sinxcosx+sinxcosx
=2sinxcosx
so sin2x=2sinxcosx is an identity
