Use fast modular exponentiation to find 11 mod 115 mod 17 Th
Solution
The expression a b (mod n), pronounced “a is congruent to b modulo n,” means that a b is a multiple of n or, a – b is divisible by n. Given a, there is only one value b between 0 and n1 so that a b (mod n). We call b the residue of a modulo n and write b = (a mod n). Also A2 mod C = (A * A) mod C = {(A mod C) * (A mod C)} mod C. We shall use these rules to compute the required expression.
We have 111 mod 17= 11mod 17 = 11
Further, 112 mod 17 = (11*11) mod 17 = {(11mod17)(11mod17)}mod 17
We can substitute our previous result for 11 mod 17 into this equation so that 112 mod 17 = (11*11)mod 17 = (11*11)mod 17 = 121 mod 17 = 2
Next, 114 mod 17 = (112 *112) mod 17 = { (112 mod 17)(112mod17)} mod 17
We can substitute our previous result for 112 mod 17 into this equation so that 114 mod 17 = (2*2) mod 17 = 4 mod17 = 4
Next 118 mod 17 = (114 * 114 ) mod 17 = {(114 mod 17)(114 mod17)} mod 17
We can substitute our previous result for 114 mod 17 into this equation so that 118 mod 17 = (4*4) mod 17 = 16 mod17 = 16
Next 1116 mod 17 = {118 mod 17)(118 mod17)} mod 17
We can substitute our previous result for 118 mod 17 into this equation so that 1116 mod 17 = (16*16)mod 17 = 256 mod 17 = 1
Next 1132 mod 17 = {(1116 mod 17)(1116 mod17)} mod 17
We can substitute our previous result for 1116 mod 17 into this equation so that 1132 mod 17 = ( 1*1)mod 17 = 1mod 17 = 1
Next 1164 mod 17 = { ( 1132 mod17)(1132 mod17)}mod17
We can substitute our previous result for 1132 mod 17 into this equation so that 1164 mod 17 = (1*1)mod 17 = 1 mod 17 = 1
Next 1196 mod 17 = ( 1164 * 1132) mod 17 = { (1164 mod 17)*( 1132 mod 17)} mod 17 . Now, we know that 1164 mod 17 = 1 and 1132 mod 17 = 1 Therefore, 1196 mod 17 = (1*1) mod 17 = 1mod 17 = 1.
Next 11112 mod 17 = ( 1196 * 1116 ) mod 17 = { (1196 mod 17)(1116 mod 17)} mod 17 = (1*1)mod 17 = 1mod17 = 1
Also 113 mod 17 = (112 * 11)mod 17 = {( 112 mod17)( 11 mod17)} mod17 = (2*11) mod 17 = 22 mod 17 = 5.
Now, finally, 11115 mod 17 = (11112 * 113 ) mod 17 = { (11112 mod 17) ( 113 mod 17)} mod 17 = (1* 5) mod 17 = 5 mod 17 = 5
