Find a general solution of the system of equations dxdt 4x
Find a general solution of the system of equations: {dx/dt = 4x + 7y; dy/dt = x - 2y.
Solution
Adding the two equations gives
x\'+y\'=5(x+y)
ie
(x+y)\'=5(x+y)
ie
x+y=Ae^{5t}
x=Ae^{5t}-y
y\'=x-2y=Ae^{5t}-3y
y\'+3y=Ae^{5t}
INtegrating factor is: e^{3t}
Multiplying by integrating factor gives
(ye^{3t})\'=Ae^{8t}
Integrating gives
ye^{3t}=Ae^{8t}/8+B
y=Ae^{5t}/8+Be^{-3t}
x=Ae^{5t}-y=7Ae^{5t}/8-Be^{-3t}
