Evaluate arcsin cot pi4 tan sin1 513Solutiona arcsin cotpi4
     Evaluate:  arcsin [cot (- pi/4))  tan [sin^-1 (-5/13)]![Evaluate: arcsin [cot (- pi/4)) tan [sin^-1 (-5/13)]Solutiona) arcsin[ cot(-pi/4)] cot(-pi/4) = -1 arcsin[-1] = -pi/2 b) tan[ sin^-1(-5/13)] let y = sin^-1(-5/  Evaluate: arcsin [cot (- pi/4)) tan [sin^-1 (-5/13)]Solutiona) arcsin[ cot(-pi/4)] cot(-pi/4) = -1 arcsin[-1] = -pi/2 b) tan[ sin^-1(-5/13)] let y = sin^-1(-5/](/WebImages/12/evaluate-arcsin-cot-pi4-tan-sin1-513solutiona-arcsin-cotpi4-1011675-1761522305-0.webp) 
  
  Solution
a) arcsin[ cot(-pi/4)]
cot(-pi/4) = -1
arcsin[-1] = -pi/2
b) tan[ sin^-1(-5/13)]
let y = sin^-1(-5/13)
siny = -5/13 ----> tany = -5/12
So, tan[ sin^-1(-5/13)] = tany = -5/12
c) tan( arccos(x/2) )
Let arccos(x/2) =y
cosy = x/2
So, tany = sqrt( 4-x^2)/x
tan( arccos(x/2) ) = tany = sqrt( 4-x^2)/x
![Evaluate: arcsin [cot (- pi/4)) tan [sin^-1 (-5/13)]Solutiona) arcsin[ cot(-pi/4)] cot(-pi/4) = -1 arcsin[-1] = -pi/2 b) tan[ sin^-1(-5/13)] let y = sin^-1(-5/  Evaluate: arcsin [cot (- pi/4)) tan [sin^-1 (-5/13)]Solutiona) arcsin[ cot(-pi/4)] cot(-pi/4) = -1 arcsin[-1] = -pi/2 b) tan[ sin^-1(-5/13)] let y = sin^-1(-5/](/WebImages/12/evaluate-arcsin-cot-pi4-tan-sin1-513solutiona-arcsin-cotpi4-1011675-1761522305-0.webp)
