Find the equation of the line tangent to gx x3 9x2 8 at x
Find the equation of the line tangent to g(x) = x^3 - 9x^2 + 8 at x = 2. Evaluate the following limits: lim_x rightarrow 2 x^3 - 3x^2 + 2x/x63 + 7x^2 + 12x lim_x rightarrow -3 x^2 + 11x + 24/2x^2 - 2x - 24
Solution
lim x--> 2 ( x^3 - 3x^2 + 2x ) / ( x^3 + 7x^2 + 12x )
= 2^3 - 3(2^2) + 2(2) / (2^3 + 7(2^2) + 12(2) )
= 0 / 60
= 0
b) lim x --> -3 ( x^2 + 11x + 24 ) / ( 2x^2 - 2x - 24 )
= factoring numerator and denominator
lim x --> -3 ( x+8)( x+3) / 2(x+3)(x-4 )
lim x --> -3 (x+8) / 2(x-4)
plugging x = -3
(-3+8 ) / 2 ( -3 - 4) = 5 / -14
therefore , answer is -5 / 14
