6117 Given that the data follows the normal probability dist
Solution
(a) P(X<=110) = P((X-mean)/s <(110-100)/15)
=P(Z<0.67) =0.7486 (from standard normal table)
-----------------------------------------------------------------------------------------------------
(b)P(X>=110) = P(Z>0.67) =0.2514(from standard normal table)
-----------------------------------------------------------------------------------------------------
(c)P(70<=X<=110) = P((70-100)/15<Z<(110-100)/15)
=P(-2<Z<0.67) =0.7258(from standard normal table)
-----------------------------------------------------------------------------------------------------
(d)P(X<=80) = P(Z<(80-100)/15)
=P(Z<-1.33) = 0.0918 (from standard normal table)
-----------------------------------------------------------------------------------------------------
(e)P(65<=X<=90) = P((65-100)/15<Z<(90-100)/15)
=P(-2.33<Z<-0.67) =0.2415(from standard normal table)
