The work metal at this elevated temperature yields at 90 MPa
Solution
Solution:
(a) rx = Ao/Af
Ao = 0.25p(50)2 = 1963.75 mm2
Af = 0.25p(502 - 402) = 706.86 mm2
rx = 1963.75/706.86 = 2.778
(b) To determine the die shape factor we need to determine the perimeter of a circle whose area is equal to that of the extruded cross section, A = 706.86 mm2. The radius of the circle is R = (706.86/p)0.5 = 15 mm, Cc = 2p(15) = 94.25 mm.
The perimeter of the extruded cross section Cx = p(50 + 40) = 90p = 282.74 mm.
Kx = 0.98 + 0.02(282.74/94.25)2.25 = 1.217
(c) Volume of final cup consists of two geometric elements: (1) base and (2) ring.
(1) Base t = 5 mm and D = 50 mm. V1 = 0.25p(50)2(5) = 9817.5 mm3
(2) Ring OD = 50 mm, ID = 40 mm, and h = 95 mm.
V2 = 0.25p(502 - 402)(95) = 0.25p(2500 - 1600)(95) = 67,151.5 mm3
Total V = V1 + V2 = 9817.5 + 67,151.5 = 76,969 mm3
Volume of starting slug must be equal to this value V = 76,969 mm3
V = 0.25p(50)2(h) = 1963.5h = 76,969 mm3
h = 39.2 mm
(d) e = ln 2.778 = 1.0218
ex = 0.8 + 1.5(1.0218) = 2.33
Yf = 400 ( 1.0218)0.25 / 1.25 = 321.73 MPa
p = Kx Yf ex = 1.217 (321.73) (2.33) = 912.3 MPa
Ao = 0.25p(40)2 = 1256.6 mm2
F = 912.3(1256.6) = 1,146,430 N
