28 Let X and Y have joint density Determine the distribution
Solution
The joint pdf of X and Y is
f(x,y) = cx if 0 <x2 < y < sqrt(x) < 1
= 0 otherwise
Let us transform U = X2
X=sqrt(U)
We have 0 <x2 < y < sqrt(x) < 1
Then 0 < u < y and y < u1/4 < 1
=> 0 < u < y and y4 < u < 1
=> 0<y4 < u < y < 1
And |J| = 1/(2*sqrt(u))
Then the joint pdf of U and Y is
f(u,y) = f(sqrt(u),y)*|J|
= c*sqrt(u)/(2*sqrt(u)) if 0<y4 < u < y < 1
0 Otherwise
= c/2 if 0<y4 < u < y < 1
0 Otherwise
Now the pdf of Y is given by
f(y) = Integration(from=y4,to=y, c/2 du)
=c/2 * [u,from=y4,to=y]
=c(y-y4)/2 if 0<y<1
0 Otherwise
Now the conditional distribution of X2|Y i.e. U|Y is
f(u|y)= f(u,y)/f(y)
= (c/2)/( c(y-y4)/2) if 0<y4 < u < y < 1
0 otherwise
= 1/(y-y4) if 0<y4 < u < y < 1
0 Otherwise
Thus X2|Y ~ Uniform(y4,y) where 0<y<1.
