Implement a dynamic programming solution to identify the lea
Solution
Greedy method
==========================================
#include<stdio.h>
#include<limits.h>
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
int MatrixChain(int m[], int i, int j)
{
if(i == j)
return 0;
int k;
int min = INT_MAX;
int count;
for (k = i; k <j; k++)
{
count = MatrixChain(m, i, k) +
MatrixChain(m, k+1, j) +
m[i-1]*m[k]*m[j];
if (count < min)
min = count;
}
// Return minimum count
return min;
}
int main()
{
int arr[] = {1, 2, 3, 4, 3};
int n = sizeof(arr)/sizeof(arr[0]);
printf(\"Minimum number of multiplications is %d \",
MatrixChain(arr, 1, n-1));
return 0;
}
Output:
==================================================================
dynamic Programming
#include<stdio.h>
#include<limits.h>
int MatrixChain(int p[], int n)
{
int m[n][n];
int i, j, k, L, q;
/* m[i,j] = Minimum number of scalar multiplications needed
to compute the matrix A[i]A[i+1]...A[j] = A[i..j] where
dimension of A[i] is p[i-1] x p[i] */
// cost is zero when multiplying one matrix.
for (i=1; i<n; i++)
m[i][i] = 0;
// L is chain length.
for (L=2; L<n; L++)
{
for (i=1; i<n-L+1; i++)
{
j = i+L-1;
m[i][j] = INT_MAX;
for (k=i; k<=j-1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[1][n-1];
}
int main()
{
int a[] = {1, 2, 3, 4};
int size = sizeof(a)/sizeof(a[0]);
printf(\"Minimum number of multiplications is %d \",
MatrixChain(a, size));
return 0;
}
OutPut:

