Simplify the expression sec tan1 squareroot x2 1 x 1Soluti

Simplify the expression. sec (tan^-1 squareroot x^2 - 1) (x > 1)

Solution

sec(tan-1(sqrt(x2-1)))

let tan-1(sqrt(x2-1)) = t

taking tan on both sides

tan(tan-1(sqrt(x2-1)))= tan t

sqrt(x2-1) = tan t

tan t = sqrt(x2-1)/1

tan theta=opposite/adjacent

Therefore opposite=sqrt(x2-1) , adjacent=1

Using pythagoras theorem

hypotenuse2=opposite2+ adjacent2

hypotenuse2= (sqrt(x2-1))2 + 12

hypotenuse2= x2-1 + 1

hypotenuse2= x2

hypotenuse = x

sec theta= hypotenuse/ adjacent

therefore

sec t= x/1

sec t= x

Substituting back tan-1(sqrt(x2-1)) for t

sec(tan-1(sqrt(x2-1)))= x

 Simplify the expression. sec (tan^-1 squareroot x^2 - 1) (x > 1)Solutionsec(tan-1(sqrt(x2-1))) let tan-1(sqrt(x2-1)) = t taking tan on both sides tan(tan-1(

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site