Simplify the expression sec tan1 squareroot x2 1 x 1Soluti
Simplify the expression. sec (tan^-1 squareroot x^2 - 1) (x > 1)
Solution
sec(tan-1(sqrt(x2-1)))
let tan-1(sqrt(x2-1)) = t
taking tan on both sides
tan(tan-1(sqrt(x2-1)))= tan t
sqrt(x2-1) = tan t
tan t = sqrt(x2-1)/1
tan theta=opposite/adjacent
Therefore opposite=sqrt(x2-1) , adjacent=1
Using pythagoras theorem
hypotenuse2=opposite2+ adjacent2
hypotenuse2= (sqrt(x2-1))2 + 12
hypotenuse2= x2-1 + 1
hypotenuse2= x2
hypotenuse = x
sec theta= hypotenuse/ adjacent
therefore
sec t= x/1
sec t= x
Substituting back tan-1(sqrt(x2-1)) for t
sec(tan-1(sqrt(x2-1)))= x
