Find the solution to the linear system of differential equat
     Find the solution to the linear system of differential equations {x\' = -16x + 18y  y\' = -12x + 14y satisfying the initial conditions x(0) = 6 and y(0) = 3.  x(t) =  y(t) =   
  
  Solution
Subtracting two equations gives
x\'-y\'=-4(x-y)
(x-y)\'=-4(x-y)
Integrating
x-y=Ae^{-4t}
x=y+Ae^{-4t}
y\'=-12x+14y=2y-12Ae^{-4t}
(y\'-2y)=-12Ae^{-4t}
(y\'-2y)e^{-2t}=-12Ae^{-6t}
INtegrating gives
ye^{-2t}=2Ae^{-6t}+B
y=2Ae^{-4t}+Be^{2t}
x=y+Ae^{-4t}
x=3Ae^{-4t}+Be^{2t}
Usingin initial conditions
3A+B=6
2A+B=3
So, A=3,B=-3

