If 14 of disks produced on an assembly are defective whats t
If 14% of disks produced on an assembly are defective, what\'s the probability that there will be exactly 2 defects in a random sample of 20? 4 defects? Less than 6 defects?
Please break problem down without Excel.
Solution
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    20      
 p = the probability of a success =    0.14      
 x = the number of successes =    2      
           
 Thus, the probability is          
           
 P (    2 defects) =    0.246593596
****************************
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    20      
 p = the probability of a success =    0.14      
 x = the number of successes =    4      
           
 Thus, the probability is          
           
 P (    4 defects) =    0.166640724
*********************************
Note that P(fewer than x) = P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    20      
 p = the probability of a success =    0.14      
 x = our critical value of successes =    6      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   5   ) =    0.949327261
           
 Which is also          
           
 P(fewer than   6   ) =    0.949327261 [ANSWER]

