Let X have a binomial distribution with parameters n25 and p
Let X have a binomial distribution with parameters n=25 and p. Calculate each of the following probabilities using the normal approximation (with the continuity correction) for the cases p=.5, .6, and .8 and compare to the exact probabilities calculated from Appendix Table A.1.
a P(15<X<20)
b P(X<15)
c P(20<X)
all are greaterthan or equal and lesserthan or equal to signs
Solution
For p = 0.5,
mean = n p = 25*0.5 = 12.5
 standard deviation = sqrt(np(1-p)) = sqrt(25*0.5*(1-0.5)) = 2.5
a)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    14.5      
 x2 = upper bound =    20.5      
 u = mean =    12.5      
           
 s = standard deviation =    2.5      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    0.8      
 z2 = upper z score = (x2 - u) / s =    3.2      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.788144601      
 P(z < z2) =    0.999312862      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.211168261   [ANSWER]
*********************
b)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    14.5      
 u = mean =    12.5      
           
 s = standard deviation =    2.5      
           
 Thus,          
           
 z = (x - u) / s =    0.8      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   0.8   ) =    0.788144601 [ANSWER]
***********************
c)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    20.5      
 u = mean =    12.5      
           
 s = standard deviation =    2.5      
           
 Thus,          
           
 z = (x - u) / s =    3.2      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   3.2   ) =    0.000687138 [ANSWER]


