Let X have a binomial distribution with parameters n25 and p

Let X have a binomial distribution with parameters n=25 and p. Calculate each of the following probabilities using the normal approximation (with the continuity correction) for the cases p=.5, .6, and .8 and compare to the exact probabilities calculated from Appendix Table A.1.

a P(15<X<20)

b P(X<15)

c P(20<X)

all are greaterthan or equal and lesserthan or equal to signs

Solution

For p = 0.5,

mean = n p = 25*0.5 = 12.5
standard deviation = sqrt(np(1-p)) = sqrt(25*0.5*(1-0.5)) = 2.5

a)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    14.5      
x2 = upper bound =    20.5      
u = mean =    12.5      
          
s = standard deviation =    2.5      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    0.8      
z2 = upper z score = (x2 - u) / s =    3.2      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.788144601      
P(z < z2) =    0.999312862      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.211168261   [ANSWER]

*********************

b)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    14.5      
u = mean =    12.5      
          
s = standard deviation =    2.5      
          
Thus,          
          
z = (x - u) / s =    0.8      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   0.8   ) =    0.788144601 [ANSWER]

***********************

c)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    20.5      
u = mean =    12.5      
          
s = standard deviation =    2.5      
          
Thus,          
          
z = (x - u) / s =    3.2      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   3.2   ) =    0.000687138 [ANSWER]

  

Let X have a binomial distribution with parameters n=25 and p. Calculate each of the following probabilities using the normal approximation (with the continuity
Let X have a binomial distribution with parameters n=25 and p. Calculate each of the following probabilities using the normal approximation (with the continuity

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site