Let T elementof LaplaceRopf3 be defined by Tx y z y x 0 Fin
Let T elementof Laplace(Ropf^3) be defined by T(x, y, z) = (-y, x, 0). Find all eigenvalues of T. Is T nilpotent?
Solution
(a)
T(x,y,z)=k(x,y,z)=(-y,x,0)
k=0 implies:x=y=z=0 ie trivial eigenvector and eigenvalue
So let k non zero so z must be 0
-y=kx
x=ky
-y=k^2y
y(k^2+1)=0
Eigenvalues are: k=i,-i
b)
T(x,y,z)=(-y,x.0)
T^2(x,y,z)=T(-y,x,0)=(-x,-y,0)=-(x,y,0)
...
T^{2n}=(-1)^n(x,y,0)
T^{2n+1}=(-1)^n(-y,x,0)
So T is not nilpotent
