Given that tan 7 in quadrant IV nd sin 2 cos 2 and tan 2Sol
Given that tan = 7 in quadrant IV, nd sin 2, cos 2, and tan 2.
Solution
tan = 7
==> tan = 7/1
opposite side = 7 and adjacent side = 1
hypotenuse = [(-7)2 + 12] = 50
as it is in IV quadrant sine function is negative
==> hypotenuse = 52
sin 2 = 2 sin cos
==> sin 2 = 2 (-7/(52)) (1/ (52)) = -7/25
==> sin 2 = -7/25
cos 2 = cos2 - sin2
==> cos 2 =(1/ (52))2 - ( -7/(52))2 = -6/50 = -3/25
==> cos 2 = -3/25
tan 2 = sin 2 / cos 2
==> tan 2 = (-7/25)/(-3/25)
==> tan 2 = 7/3
Hence sin 2 = -7/25 , cos 2 = -3/25 , tan 2 = 7/3
![Given that tan = 7 in quadrant IV, nd sin 2, cos 2, and tan 2.Solutiontan = 7 ==> tan = 7/1 opposite side = 7 and adjacent side = 1 hypotenuse = [(-7)2 + 12] Given that tan = 7 in quadrant IV, nd sin 2, cos 2, and tan 2.Solutiontan = 7 ==> tan = 7/1 opposite side = 7 and adjacent side = 1 hypotenuse = [(-7)2 + 12]](/WebImages/13/given-that-tan-7-in-quadrant-iv-nd-sin-2-cos-2-and-tan-2sol-1013887-1761523645-0.webp)