A random sample of size n 42 is taken from a population wit

A random sample of size n = 42 is taken from a population with mean = 8.5 and standard deviation = 5. Use Table 1.


  

Calculate the expected value and the standard error for the sampling distribution of the sample mean. (Negative values should be indicated by a minus sign. Round \"expected value\" to 1 decimal place and \"standard deviation\" to 4 decimal places.)


  


  

What is the probability that the sample mean is less than 9? Round intermediate calculations to 4 decimal places, “z” value to 2 decimal places, and final answer to 4 decimal places.)


  


  

What is the probability that the sample mean falls between 9 and 8? (Do not round intermediate calculations. Round \"z\" value to 2 decimal places and final answer to 4 decimal places.)


  

A random sample of size n = 42 is taken from a population with mean = 8.5 and standard deviation = 5. Use Table 1.

Solution

a)

The expected value is the mean, and the standard error is s/sqrt(n). Thus,

Expected value = -8.5 [ANSWER]
standard error = 5/sqrt(42) = 0.77151675 [ANSWER]

********************

b)

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    -9      
u = mean =    -8.5      
n = sample size =    42      
s = standard deviation =    5      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    -0.65      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.65   ) =    0.257846111 [ANSWER]

*********************

c)

We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
x1 = lower bound =    -9      
x2 = upper bound =    -8      
u = mean =    -8.5      
n = sample size =    42      
s = standard deviation =    5      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u) * sqrt(n) / s =    -0.65      
z2 = upper z score = (x2 - u) * sqrt(n) / s =    0.65      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.257846111      
P(z < z2) =    0.742153889      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.484307778   [ANSWER]  

A random sample of size n = 42 is taken from a population with mean = 8.5 and standard deviation = 5. Use Table 1. Calculate the expected value and the standard
A random sample of size n = 42 is taken from a population with mean = 8.5 and standard deviation = 5. Use Table 1. Calculate the expected value and the standard

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site