Use the powerreducing formulas to rewrite the given expressi
Use the power-reducing formulas to rewrite the given expression in terms of the first power of the cosine.
Solution
sin4x
=(sin2x)2
=(1-cos2x)2(since sin2a+cos2a=1)
=1-2cos2x+cos4x
=1-2cos2x+(cos2x)2
=1-(2(1+cos2x)/2)+((1+cos2x)/2)2 (since cos2a =(1+cos2a)/2)
=1-1-cos2x +((1+cos2x)/2)2
= -cos2x +(1/4)(1+cos2x)2
= -cos2x +(1/4)(1+2cos2x+(cos2x)2)
= -cos2x +(1/4)+(1/2)cos2x+(1/4)(cos2x)2
= -cos2x +(1/4)+(1/2)cos2x+(1/4)((1+cos4x)/2)
=(1/4)-(1/2)cos2x+ (1/8)(1+cos4x)
=(1/4)-(1/2)cos2x+ (1/8)+ (1/8)cos4x
=(3/8)-(1/2)cos2x+ (1/8)cos4x
sin4x=(3/8)-(1/2)cos2x+ (1/8)cos4x
