Use the powerreducing formulas to rewrite the given expressi

Use the power-reducing formulas to rewrite the given expression in terms of the first power of the cosine.

Solution

sin4x

=(sin2x)2

=(1-cos2x)2(since sin2a+cos2a=1)

=1-2cos2x+cos4x

=1-2cos2x+(cos2x)2

=1-(2(1+cos2x)/2)+((1+cos2x)/2)2  (since cos2a =(1+cos2a)/2)

=1-1-cos2x +((1+cos2x)/2)2

= -cos2x +(1/4)(1+cos2x)2

= -cos2x +(1/4)(1+2cos2x+(cos2x)2)

= -cos2x +(1/4)+(1/2)cos2x+(1/4)(cos2x)2

= -cos2x +(1/4)+(1/2)cos2x+(1/4)((1+cos4x)/2)

=(1/4)-(1/2)cos2x+ (1/8)(1+cos4x)

=(1/4)-(1/2)cos2x+ (1/8)+ (1/8)cos4x

=(3/8)-(1/2)cos2x+ (1/8)cos4x

sin4x=(3/8)-(1/2)cos2x+ (1/8)cos4x

 Use the power-reducing formulas to rewrite the given expression in terms of the first power of the cosine.Solutionsin4x =(sin2x)2 =(1-cos2x)2(since sin2a+cos2a

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site