Solve the following Bernoulli differential equations b ytan
Solve the following Bernoulli differential equations
b. y\'-(tan x)y = (cos x)y, y(0) = 3.Solution
(b)
y\' -tanx y = cosx y^4
let v = y^(-3)... => v\' = (-3)y^(-4)y\' ......=>v(0) = 1/27
=>
-v\'/3 -tanx *v = cosx
=>
v\' +(3tanx)v = -3cosx
mulplying the equation with sec^3 x, we get
v\'sec^3 x + 3vsinx/cos^4 x = -3/cos^2 x
=>
d(v/cos^3 x) = -3dx/cos^2 x
=>
v/cos^3x = -3tanx +c
=>
v = -3sinx cos^2 x +c
=>
c=1/27 since v(0) = 1/27
=>
v = -3sinx cos^2 x +1/27
=>
y^3 = 27/(1-81sinxcos^2 x)
(c)
y\' = xy^3 -y
let v = y^(-2) ..=> v\' = (-2)y^(-3)y\'.... and v(0) = 1
=>
-v\'/2 + v = x
=>
v\'-2v = -2x
=>
e^(-2x) *v\' -2v* e^(-2x) = -2xe^(-2x)
=>
d(ve^(-2x)) = -2xe^(-2x)dx
=>
ve^(-2x) = (1+2x)/2 * e^(-2x) +c
=>
1 = c+1/2 since v(0) =1
=>
c = 1/2
=>
ve^(-2x) = (1+2x)/2 * e^(-2x) +1/2
=>
v = (2x+1)/2 + e^(2x)/ 2
=>
v = (e^2x + 2x +1 )/2
=>
1/y^2 = (e^2x + 2x +1 )/2
=>
y^2 = 2/(e^2x + 2x +1 )

