Consider the initial value problem ty 3y cost4 with 1 Find
Consider the initial value problem ty\' + 3y = cos(t)4 with =1 Find the solution to the initial value problem.
Solution
y\'+3y/t=cos(t^4)
integrating factor:
exp((3/t)*dt)=t^3
so y*(t^3)=(cos(t^4))*(t^3)dt)
let t^4=p
4*t^3*dt=dp
so (cos(t^4))*(t^3)dt)=(cos(p)*(1/4)*dp)=sin(p)/4 +c
c=a constant
final solution:-
y*t^3=sin(t^4)*0.25+c
at t=pi^(1/4),y=1
so 1*pi^(3/4)=c
so complete solution:-
y*t^3=sin(t^4)*0.25+pi^(3/4)
