Hello I need help solving this problem with work shown so th

Hello I need help solving this problem with work shown so that I will in the future thanks! Number 15 and 17.
14. n = 234, p = 0.75; P(0.77

Solution

15.

A)

up = 0.63 [ANSWER]

***************

b)

sigmap = sqrt(p(1-p)/n) = sqrt(0.63*(1-0.63)/250) = 0.030535226 [ANSWER]

****************

c)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    0.67      
u = mean =    0.63      
          
s = standard deviation =    0.030535226      
          
Thus,          
          
z = (x - u) / s =    1.309962468      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   1.309962468   ) =    0.095104266 [ANSWER]

*********************
d)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    0.6      
x2 = upper bound =    0.7      
u = mean =    0.63      
          
s = standard deviation =    0.030535226      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.982471851      
z2 = upper z score = (x2 - u) / s =    2.292434318      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.162933722      
P(z < z2) =    0.989059703      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.826125981   [ANSWER]

*********************

e)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    0.62      
u = mean =    0.63      
          
s = standard deviation =    0.030535226      
          
Thus,          
          
z = (x - u) / s =    -0.327490617      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.327490617   ) =    0.371648419 [ANSWER]

***********************

f)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    0.57      
u = mean =    0.63      
          
s = standard deviation =    0.030535226      
          
Thus,          
          
z = (x - u) / s =    -1.964943701      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -1.964943701   ) =    0.024710377

It depends on how you define \"unusual\" in class. Some define unusual as less than 0.10, in which case, this is unusual.  

*******************************************

Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!

Hello I need help solving this problem with work shown so that I will in the future thanks! Number 15 and 17. 14. n = 234, p = 0.75; P(0.77 Solution15. A) up =
Hello I need help solving this problem with work shown so that I will in the future thanks! Number 15 and 17. 14. n = 234, p = 0.75; P(0.77 Solution15. A) up =

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site