Using the table of indices above compute the following a ind
Using the table of indices above, compute the following
a) ind328
b) ind3510
d) The least residue 710 modulo 17
| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| ind3n | 0 | 14 | 1 | 12 | 5 | 15 | 11 | 10 | 2 | 3 | 7 | 13 | 4 | 9 | 6 | 8 |
Solution
The second row should read ind 3n (not ind 3n)
As ind is defined modulo 17
(a) ind 328 = ind 328 mod 17
=ind 5
=5
(b) Ind 3510 = Ind 3510 mod 17
= ind 8
=10
(c) From the table Ind(15.13) = ind 15+ind 13
= 10
so the least residue =8
(d) ind(710) = ind (71) +ind(10)
= ind (3)+ ind(10)
=4
So the least residue 0f 710 =13
