Solve the given logarithmic equation 3 log x 125 The solutio
Solve the given logarithmic equation -3 log x 125 The solution set is {L} (Simplify your answer.)
Solution
1) logx(1/125) = 3
use the log property: logab = y ----> b = a^y
logx(1/125) = 3
(1/125) = x^3
x = (1/25)^1/3 = 1/5
x= 1/5
2) logm(sqrt(5r^7/z^3)
Use the log properties:
log(A*B/C) = logA + logB -logC
and logA^r = r*logA
So, logm(sqrt(5r^7/z^3)
= logm(5r^7)^1/2 - logmz^3/2
= (1/2)logm(5r^7) - 3/2logmz
=(1/2)logm5 + 7/2logmr - 3/2logmz
=(1/2) { logm5 + 7logmr + 3logm(1/z) }
= (1/2) { logm5 + 7logmr + logm(1/z^3) }
Option A
