1sec beta tan beta sec beta tan beta 1 cos x1 cos x co
1/sec beta + tan beta = sec beta - tan beta 1 - cos x/1 + cos x = (cot x - csc x)^2 tan alpha - csc alpha sec alpha (1 - 2 cos^2 alpha) = cot alpha sin x + tan x/cot x + csc x = sin x tan x sec x + csc x/tan x + cot x = sin x + cos x sin^3 beta + cos^3 beta/cos beta + sin beta = 1 - sin beta cos beta
Solution
1).
L.H.S= 1/(sec+tan)
mutiply and divide with (sec-tan)
= (sec-tan) / [ (sec+tan).(sec-tan)]
= (sec-tan) / [ sec^2 - tan^2 ]
but sec^2 - tan^2 =1 , so
= (sec - tan)/1
= sec - tan
L.H.S= R.H.S
2).
L.H.S= (1-cosx)/(1+cosx)
mutiply and divide with (1-cosx)
so lhs = (1-cosx)^2 / (1-cos^2 x)
= (1 - cosx)^2/ sin^2x
= [ (1-cosx)/sinx ] ^2
= [ 1/sinx - cosx/sinx ]^2
= [ cscx - cotx]^2
= (-1)^2 (cotx - cscx)^2
= (cotx - cscx)^2
L.H.S= R.H.S
3).
L.H.S= tan -csc.sec(1- 2cos^2 )
= tan - 1/sinx.cosx ( 1 - 2cos^2)
= sin/cos - (sin^2 +cos^2-2cos^2) / sin.cos
= sin/cos - (sin^2 -cos^2)/sin.cos
= [sin^2 -sin^2 +cos^2] / sin.cos
=[cos^2/sin.cos]
= [cos/sin]
=cot
L.H.S= R.H.S
post other 3 questions in separate question

