Perform the multiplication 2 3 1 1 1 3 2 1 2 3 1 0 2 1 0 1 i
Solution
Solution:
let A= 2 3
1 -1
order A=2*2
2 rows 2 columns
B= 1 3 2
1 -2 3
order =2*3
C=1 0
2 -1
0 1
order C 3*2
SolutionA:
multiply BC
order of B=2*3
order of C=3*2
since no of columnsof B=3=no of rows of C
product BC order=2*2
we can multiply BC
1 3 2 1 0
1 -2 3 2 -1
0 1
=1*1+3*2+2*0 1*0+3*-1+2*1
1*1-2*2+3*0 1*0+-2*-1+3*1
=1+6+0 0-3+2
1-4+0 0+2+3
=7 -1
-3 5
A(BC)
order=2*2*(2*2)=2*2
2 3 7 -1
1 -1 -3 5
=2*7+3*-3 2*-1+3*5
1*7+-1*-3 1*-1+-1*5
=14-9 -2+15
7 +3 -1-5
A(BC) = 5 13
10 -6
SolutionB:
(AB)C needs to be found
order A=2*2
order B=2*3
order AB=2*3
AB= 2 3 1 3 2
1 -1 1 -2 3
=2*1+3*1 2*3+3*-2 2*2+3*3
1*1+-1*1 1*3+-1*-2 1*2+-1*3
=5 0 13
0 5 -1
(AB)C=
5 0 13 1 0
0 5 -1 2 -1
0 1
=5*1+0*2+13*0 5*0+0*-1+13*1
0*1+5*2+-1*0 0*0+5*-1+-1*1
=5+0+0 0-0+13
0+10-0 0-5-1
( AB)C = 5 13
10 -6
we conclude form both that
A(BC)=(AB)C
![Perform the multiplication [2 3 1 -1] [1 3 2 1 -2 3] [1 0 2 -1 0 1] in each of the following orders: [2 3 1 -1] ([1 3 2 1 -2 3] [1 0 2 -1 0 1]) ([2 3 1 -1] [1 Perform the multiplication [2 3 1 -1] [1 3 2 1 -2 3] [1 0 2 -1 0 1] in each of the following orders: [2 3 1 -1] ([1 3 2 1 -2 3] [1 0 2 -1 0 1]) ([2 3 1 -1] [1](/WebImages/13/perform-the-multiplication-2-3-1-1-1-3-2-1-2-3-1-0-2-1-0-1-i-1016438-1761525236-0.webp)
![Perform the multiplication [2 3 1 -1] [1 3 2 1 -2 3] [1 0 2 -1 0 1] in each of the following orders: [2 3 1 -1] ([1 3 2 1 -2 3] [1 0 2 -1 0 1]) ([2 3 1 -1] [1 Perform the multiplication [2 3 1 -1] [1 3 2 1 -2 3] [1 0 2 -1 0 1] in each of the following orders: [2 3 1 -1] ([1 3 2 1 -2 3] [1 0 2 -1 0 1]) ([2 3 1 -1] [1](/WebImages/13/perform-the-multiplication-2-3-1-1-1-3-2-1-2-3-1-0-2-1-0-1-i-1016438-1761525236-1.webp)