You are designing an industrialscale naturalgasfired power p
Solution
solution:
1)for given brayton cycle without regenerator efficiency is less but iducing regenerator efficiency increases and total heat supplied reduces
A)2)for PR=Rp=2
hence for temperature
T2=T1(Rp)^(.4/1.4)
T3=T4(Rp)^(.4/1.4)
we get that
T2=358.39 k
T4=839.20 k
2)but compressor and turbine efficiency are
nc=T2-T1/T2\'-T1
nt=T3-T4\'/T3-t4
we get actual cycle temperature as
T2\'=372.52 k
T4\'=861.25 k
5) mass flow rate is obtained as
net work=Wn=Wt-Wc=m\'Cp((T3-T4\')-(T2\'-T1))
hence for net work=1100 kw and cp=1.005 kj/kg k
we get
m\'=13.15 kg/s
hence specific net work=W/m\'=83.6461 kj/kg
6)cycle efficiency without regeneration is
n=Wn/Qh
Qh=m\'Cp*(T3-T2\')=8596.58 kw
n=.1279
6)on reneration effectiveness heat extraxted suppliesd to air before combustion hence
Er=Ts-T2\'/T4\'-T2\'
Er=.85
Ts=767.07 k
7)heat saved is
Qh\'=Qh-Qs
Qs=m\'*Cp(Ts-T4\')=5401.12 kw
Qh\'=3195.46
nreg=Wn/Qh\'=.3442
8)saving in cost=Qs*86400*8.3*10^-6=3873.25 dollar
B)for PR=Rp=3
hence for temperature
T2=T1(Rp)^(.4/1.4)
T3=T4(Rp)^(.4/1.4)
we get that
T2=402.40 k
T4=747.40 k
2)but compressor and turbine efficiency are
nc=T2-T1/T2\'-T1
nt=T3-T4\'/T3-t4
we get actual cycle temperature as
T2\'=426.19 k
T4\'=780.47 k
5) mass flow rate is obtained as
net work=Wn=Wt-Wc=m\'Cp((T3-T4\')-(T2\'-T1))
hence for net work=1100 kw and cp=1.005 kj/kg k
we get
m\'=9.919 kg/s
hence specific net work=W/m\'=110.89 kj/kg
6)cycle efficiency without regeneration is
n=Wn/Qh
Qh=m\'Cp*(T3-T2\')=5949.35 kw
n=.1848
6)on reneration effectiveness heat extraxted suppliesd to air before combustion hence
Er=Ts-T2\'/T4\'-T2\'
Er=.85
Ts=727.32 k
7)heat saved is
Qh\'=Qh-Qs
Qs=m\'*Cp(Ts-T4\')=3001.92 kw
Qh\'=2947.43
nreg=Wn/Qh\'=.3732
8)saving in cost=Qs*86400*8.3*10^-6=2152.73 dollar
C)for PR=Rp=4
hence for temperature
T2=T1(Rp)^(.4/1.4)
T3=T4(Rp)^(.4/1.4)
we get that
T2=436.88 k
T4=688.42 k
2)but compressor and turbine efficiency are
nc=T2-T1/T2\'-T1
nt=T3-T4\'/T3-t4
we get actual cycle temperature as
T2\'=468.24 k
T4\'=728.56 k
5) mass flow rate is obtained as
net work=Wn=Wt-Wc=m\'Cp((T3-T4\')-(T2\'-T1))
hence for net work=1100 kw and cp=1.005 kj/kg k
we get
m\'=9.105 kg/s
hence specific net work=W/m\'=120.8 kj/kg
6)cycle efficiency without regeneration is
n=Wn/Qh
Qh=m\'Cp*(T3-T2\')=5078.47 kw
n=.2166
6)on reneration effectiveness heat extraxted suppliesd to air before combustion hence
Er=Ts-T2\'/T4\'-T2\'
Er=.85
Ts=689.51 k
7)heat saved is
Qh\'=Qh-Qs
Qs=m\'*Cp(Ts-T4\')=2024.75 kw
Qh\'=3051.58 kw
nreg=Wn/Qh\'=.3604
8)saving in cost=Qs*86400*8.3*10^-6=1451.98 dollar
d)in this way performance can be obtain for Rp=5,it is observe that efficiency increases with increase in pressure ratio and cost of saved heat is less at higher pressure ratio



